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Properties of inviscid, recirculating flows 

By W. W. WOOD 
Aeronautical Research Laboratories, Fishermen’s Bend, Victoria, Australia 

(Received 25 September 1964) 

Integral relations are derived for steady, incompressible recirculating motions 
with small viscous forces. The circuit time of a fluid particle on a closed streamline 
in steady, inviscid flow is shown to be the same for all the closed streamlines on 
a surface of constant total head. 

The discontinuities of velocity and velocity gradient that occur in the motion 
of inviscid fluid filling a closed, rotating cylinder set in a rotating support with 
the two rotation axes slightly misaligned are then investigated. 

1. Introduction 
Recirculating flows occur in wakes behind bluff bodies and in cavities in wind- 

swept surfaces. A significant advance in their theoretical treatment was the 
discovery of simple rules for the distribution of vorticity in steady, incompres- 
sible, two-dimensional or axisymmetric flows with small viscous forces. The 
arguments leading to these rules, however, require the symmetries to be accurate 
to o(B-l) for large Reynolds number R. This requirement is exacting and makes 
flows which depart from these special symmetries, even slightly, worth con- 
sidering. 

I n  the first half of this paper a few general properties of steady, recirculating 
flows are derived from integrals of the equations of motion. Foremost are the 
field equations (2.3) and (2.4) which supplement Euler’s equations of inviscid 
motion. These apply when, in the inviseid limit, there is no normal component 
of vorticity at the enveloping boundaries. In  particular they confirm the simple 
rules for closed axially symmetric flows with velocity components in planes con- 
taining the axis as an appropriate approximation when small asymmetries are 
present. The asymmetries here may be independent of Reynolds number. 
Viscous forces though small are again crucial and extraneous forces, notably 
buoyancy, are required to be smaller still. For certain flows where the normal 
vorticity at the boundary is not zero in the inviscid limit, an extension is noted 
of the mechanism proposed by Batchelor (1951) for the control of the inviscid core 
between two rotating disks. The curious property is also noted that the circuit 
time for particles on closed streamlines in steady, strictly inviscid flow is the 
same for any two closed streamlines on a surface of constant total head H ,  
provided that on the surface the streamlines are reconcilable and V H  -+ 0. All 
these properties extend to flows steady relative to a rotating frame. 

The uniform vorticity predicted for two-dimensional flows with small viscous 
forces is not necessarily a good approximation when the flow is slightly three- 
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dimensional. The axisymmetric flow between two rotating spheres (Proudman 
1956) can be two-dimensional in the inviscid limit and can at the same time have 
a non-uniform vorticity distribution, because the axial drift of O(R-*) from the 
sphere’s boundary layers has a larger effect than two-dimensional viscous 
diffusion. End effects can also be important in other ways. The experiments of 
Maul1 & East (1963) on wind-swept cavities with a span several times longer 
than the depth and the streamwise-width indicate a regular spanwise arrange- 
ment of boundary-layer separations. While a rigidly rotating column is well 
known to possess inviscid, asymmetric modes of disturbance which can be 
resonantly amplified at large Reynolds numbers by a column of suitable length 
(cf. Chandrasekhar 1961). Inertial resonances of this kind were described by 
Kelvin (ISSO), for oscillatory disturbances, and were pursued by Bjerknes & 
Solberg ( 1933) because of their possible bearing on large-scale atmospheric circu- 
lations. They are of interest too because the governing linearized equations are 
hyperbolic in planes containing the axis of rigid rotation. Some novel con- 
sequences of this special aspect of small departures from two-dimensional flow 
are discussed in the second half of the paper, 

The motion will be considered of inviscid fluid filling a finite cylinder which 
rotates about its axis and is set at a small angle to the vertical in a frame which 
rotates about the vertical. The flow is steady relative to the cylinder and is 
subject to resonance. The additional feature described here is the pattern of dis- 
continuities of velocity and shear that can occur in the fluid interior. The pattern 
moreover changes randomly with changes in the ratios, cell height/cell radius and 
precessional angular speed/primary angular speed. 

Perturbations, steady relative to a rotating frame, of axisymmetric Couette 
flows have a hyperbolic, linearized equation for the component of disturbance 
pressure which varies as einS if 

Here w,k is the frame’s angular velocity, p, + are polars in planes normal to k 
with + measured relative to the rotating frame and wo(p) is the unperturbed speed 
relative to fixed axes. It seems probable that the same qualities of discontinuity 
and randomness are shared by all such disturbances. For steady disturbances 
of rigid rotation the first asymmetric mode is included but none of the higher 
modes. 

2wo d(Po) /dP ’ n2@o - P 0 2 l 2 .  

2. General properties 
We shall derive certain integrals for regions of small viscous forces in steady, 

recirculating, incompressible motions. In  the absence of special symmetries, it  
is convenient to specify the topology of the surfaces of constant total head H .  
We distinguish (a)  flows, like a ring vortex, where the H-surfaces lie wholly in 
the inviscid zone and are closed, and ( b )  flows, as between rotating disks, where 
the H-surfaces pass into shear layers (figure 1). VH will be assumed non-zero. 

Suppose first that the total head is constant on closed surfaces lying wholly in 
the interior of the inviscid zone. The equations of motion, written 

u x w = VH+vcurlo, divu = 0,  (2.1) 
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where u is the velocity and o the vorticity, give for the volume A V between any 
two, closed total head surfaces H = H,, H = H,+AH 

provided there are no sources or sinks in the volume enclosed by either surface. 
Thence on dividing by AH and letting AH + 0, we have for each surface H = H,, 

[ u.curlw as = 0. 
, PHI J H = H o  

(2.3 

H =  H , + A H  

FIGURE 1. Recirculating flows (a) with the surfaces of constant total head H closed in the 
fluid interior; ( b )  with the total head surfaces passing into the shear layers. 

By similar reasoning, also 

Provided the H-surfaces deform continuously and remain closed and in the 
inviscid zone as v+O, all the integrals hold also in the inviscid limit. 

The integrals thus yield in effect field equations supplementary to the Euler 
equations of inviscid motion, and though simply derived are not without signifi- 
cance. For axisymmetric flows, (2.3) and (2.4) yield the rules for vorticity and 
azimuthal velocity found by Batchelor (1956) (cf. hisequations (4.14) and (4.17)), 
with the minor addition that these rules can now be extended to motions with an 
internal boundary. Where the vortex lines are co-ordinate lines of an orthogonal 
system, as in most simple geometries, (2.4) is satisfied automatically. 

22-2 
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We now pass to flows where the total head surfaces of the inviscid zone pass 
into shear layers (figure 1 ( b ) ) .  For a volume V in the inviscid zone enclosed by 
a total head surface H = H, and an aggregate surface S ,  the equations of motion 
give -Is u H . d S  = v u . c u r l o d ~ .  (2.5) s, 
The surface S may be taken close to the shear layers relative to the inviscid zone’s 
overall dimensions. When S is close enough, the velocity u, normal to S is of the 
order of the efflux velocity at the outer edge of the shear layer. Hence for small v 
the left-hand side of (2.5) predominates, and to a first boundary-layer approxi- 
mation, 

/su,HdS = 0, j - m d s  u, sin 0 = 0. 

In  the last integral, 0 is the angle between V H  and the normal to 8, and C is the 
aggregate boundary of 8, i.e. C is the aggregate of the close loops defined on the 
surface H = H,, of the inviscid zone, at the outer ‘edge’ of each shear layer which 
it intercepts. 

Control of the inviscid core by the requirement that the efflux and influx of 
opposing boundary layers should match was the mechanism advanced for 
rotating disks (Batchelor 1951). The burden of (2.6) is that the inviscid core is 
controlled similarly whenever the equi-total head surfaces pass into the bounding 
shear layers. 

Flows with small viscous forces which differ slightly remain in the same 
group ( a )  or (b ) ,  as defined above, provided that V H  4 0. So the integrals 
obtained apply to slightly non-axisymmetric flows. In  particular they confirm 
that (a )  the known vorticity rules for axisymmetric flows with helical streamlines 
and ( b )  the boundary-layer matching mechanism for axisymmetric flows with 
azimuthal streamlines and boundaries oblique to the axis are both good approxi- 
mations in the presence of small asymmetries. The asymmetries may be O( 1) for 
large Reynolds numbers. The uniform vorticity rule, by contrast, is not neces- 
sarily a good approximation in the presence of small departures from two- 
dimensionality because, as remarked in the introduction, convections of O(R-+) 
can dominate the effects of two-dimensional diffusion. 

A further property of steady (exactly) inviscid flow concerns streamlines which 
are closed. From the inviscid equations, i.e. (2.1) with v = 0, we can write 

o = hu - (U x V H ) / @ ,  (2.7) 

where h is a scalar and q = IuI . As remarked a t  the outset V H  is presumed non- 
zero, and stagnation points are consequently excluded. On taking the divergence 
of (2.7), there follows 

0 = div hu - (curl u/q2). V H .  

We now consider any pair of closed and reconcilable streamlines C, and Cg on 
a surface H = H,. The two closed streamlines enclose an area So on the surface 
H = H,, and the normals to So form a small volume AT?, between H = H, and 
a neighbouring surface H = H, + AH (figure 1 ( c ) ) .  Fluid enters the volume AT?, 
only through a strip of width O(AH) and a t  a small angle to the strip. Hence the 
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inward flux is o(AH) for small AH. Integration of (2.8) over the volume A& 
therefore gives 

O =  lim - 

= lim H/Avocurl 1 a". U VH d7 
AH+O 

whence, finally, 

(2.9) 

(2.10) 

We conclude that, in steady, inviscid, incompressible flow, the circuit times of 
fluid particles on any pair of closed streamlines on a surface of constant total 
head are equal, provided that on the surface the streamlines can be deformed 
continuously into each other and V H  =f= O.* 

The existence of closed streamlines in inviscid flow is again linked with the 
topology of the total head surfaces. The simplest case is where the H-surfaces end 
on solid boundaries and are topologically like the H-surfaces in rigid rotation 
between two rotating disks. The streamlines are then all closed. To see this, we 
may picture a slender stream-tube bounded by two H-surfaces at the sides, by 
the solid boundary at the base and by a strip of streamlines on top (figure 1 (a)). 
If the 'top ' strip of streamlines does not close it has, after circulating round the 
boundary, an intercept I ,  with any plane roughly normal to the tube different 
from its initial intercept li. The line intercepts li and I ,  must intersect, because 
the same total flux passes through each of the initial and final cross-sections in 
the plane (i.e. one cross-section cannot be inside the other). At least one stream- 
line leaving li therefore circulates back to 4, This is incompatible with any stream- 
line near the boundary being unclosed, since li is arbitrary and can be indefinitely 
short. All the streamlines near the boundary are therefore closed-and so on for 
the whole region. The circuit time, moreover, varies continuously with H .  The 
circuit time result applies, for example, to axisymmetric AOWS, with azimuthal 
streamlines and rigid boundaries normal to the axis, which are asymmetrically 
perturbed. 

The closure of streamlines cannot be assumed if the H-surfaces are closed and 
do not intersect the solid boundaries. This is illustrated by the axisymmetric ring 
vortex with azimuthal swirl. The helical streamlines on each toroidal H-surface 
are all closed or all unclosed depending whether the ratio of the times for single 
circuits of the straight axis and the central, circular axis is rational or irrational. 
The ratio normally changes continuously with H and the accompanying change 
in closure is highly erratic. The value of the circuit-time result for closed surfaces 
is, correspondingly, restricted. 

All the above arguments have simple counterparts for motions which are 
steady relative to a frame rotating with constant angular velocity to2. The 
equations of motion are then 

u x ( 0 + 2 0 , )  = VH+vcurlo, (2.11) 

* This w&s fist proved by Ertel (1950) by a different, method for flows in which all the 
streamlines are closed (cf. Truesdell 1954). 
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where u and w are now relative to  the frame and H now includes - wt x (distance 
to the axis)2. With these reinterpretations of u, w and H ,  the integral conditions, 
(2.3), (2.4) and (2.6), on the inviscid flow apply as before, except that (2.4) now 
reads Lm W+2w2.curlwdS = 0. (2.12) 

The circuit-time result also holds for the relative velocity, because div (w + 2w.J 
still vanishes, and the remarks on streamline closure carry over unchanged. 

3. A perturbed inviscid rigid rotation 
The next two sections are devoted to a pattern of internal discontinuities of 

velocity and shear that occurs when a rigid rotation is disturbed. The perturba- 
tion in question is steady relative to a rotating frame. However, as mentioned 

---- 
Discontinuity 

surfaces 
Discontinuity 

surfaces 

FIGURE 2. Rotating fluid cell with discontinuity surfaces. 

above, the same features are expected to be shared by the first asymmetric mode 
of a steady, inviscid disturbance of rigid rotation, because the linearized equation 
for the relevant pressure disturbance is again hyperbolic. 

The motion to be considered is of inviscid fluid filling a closed cylinder which is 
set in a frame at a small angle a to  the vertical and rotates about its own axis 
with angular velocity wI, relative to the frame, while the frame rotates with 
angular velocity o2 about the vertical (figure 2). The cylinder centre is supposed 
a t  rest. 

Relative to the rotating support the motion is steady. Polars (r,  #, z )  fixed in 
the support will be used, with z along the cylinder's axis and r in the plane of 
the two axes of rotation. After writing the velocity relative to the support as 

u = rw,<P+a(ur+v<P+wz) (3.1) 
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and ignoring second-order quantities in a, the equations of motion become 

aula4 - ~ W V  = - arrlar, avla4 + ~ W U  = - a r p a 4 ,  
aw/a4 + 2rw2 cos 4 = - arqaz, a(ru)lar + av/a$ + r awpz  = 0, (3.2) 

where II is a reduced pressure and w = 1 +w2/w1. Thence with 

u = wlUsin$, v = wlVcosa, w = w1 Wsin4, II = w1Qcosq5, (3.3) 

we have 

and 

(4w2-1), V =  

(3.5) 

A formal solution satisfying the boundary conditions is then, for 2w > - 1, 

(3.6) 
where a and 1 are respectively the cylinder’s radius and half-height and the A, are 
the positive roots of hJ;(A) + 2wJ,(h) = 0. If 2w < - 1, there are two imaginary 
roots of the eigen-equation for h and two extra terms have to be inserted in the 
series for Q. The motion is well behaved if 12wI < 1: the interest arises when 
12wI > 1 and the pressure equation (3.5) is hyperbolic. As observed by Kelvin 
(cf. Chandrasekhar 1961) resonance occurs whenever 

Z/na(4w2 - 1)* ( = c/n,  say) = (odd integer)/2hs (3.7) 

To discuss the singular surfaces involved in the above solution, attention is 
directed to rational values of c (namely R/T where R and T are co-prime). These 
values are the ones for which the characteristics, 

ria & cz/Z = const. (3.8) 

are closed after one or more reflexions at the cylinder’s sides, ends or axis. 
The resonant c = (odd integer)n/2hs and the rational c selected are both 

denumerable, dense sets in ( 0 , ~ ) .  It is a priori unlikely that a given rational 
should be of the form (odd integer)7r/2hs and the possibility of resonant infinities 
for the selected c will be ignored in what follows. However, it should be men- 
tioned that so doing strictly involves an assumption. 

4. Velocity and shear discontinuities 

We note that when 9 is large 

cos {hsZ/a(4w2- I)*) 

(a)  R =+ 2(mod4) 

A, = (s - so + 2)n + (2w - $)/ns + O( 1/92),  (4.1) 

= ( - l)cR [cos {(a + $)Rn/T} - (2w -2)R sin{(a + $)Rn/T}/nT9 + 0(1/s2)], 
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where so is a fixed integer and s - so is expressed CT + u with u = 0,1,2, . . . , T - 1, 
The pressure modes are thus O( 1/83) provided R ?= 2(mod 4) and on collecting the 
leading approximations to the higher-order modes, the pressure may be written, 

Q =af K+g) -af t-g) 
+ contributions which yield continuous velocity gradients, 

2(0-1) (1+2w)  
T 

where f(a) = 

1 T-1 exp (‘i~i[(a + 3) a - 21) 
T a=O ( - 1 ) O  cos (a + $)Rv/T’ k(a) = - 2 

P(a)  = -/a:/a:log{l -exp [ni(a’T+R+T)]}da’da. 

a. is such that the logarithm is bounded. 
The velocity gradients are evidently liable to discontinuities when 

rT/a zR/Z + R + T = an even integer, 

because of the singular behaviour of d2F/da2. The singular surfaces are readily 
identified as the cones generated by the characteristics through the corners 
r = a, z = 2 1 and their reflexions at the cylinder’s ends, sides, and axis. The 
discontinuity occurs in the gradient normal to the singular surface of the compo- 
nent of velocity in a direction 7 lying in the surface and at angle q5 (taken positive 
in the sense r increasing) to CD. The other components of shear for orthogonal 
axes based on these two directions are continuous except on the axis and on the 
circles where the singular characteristics cross. 

The shear wave strength varies in the axial plane as r-*. The coefficient k on 
a corner characteristic r/a + Rz/Tl = a + or r/a - RzlTl= a - can be shown 
after some manipulation to be 

k = 2( - 1)m i&311-1)/( 1 - p - R )  (4.5) 

where ,LA is the single, odd integral value of 

(a  2 )+ (2m+ l)R/T for m = 0,1, ... (T- 1). 

Thus IRekl = [Imkl = 1 and the shear-wave strength varies smoothly with w 
and lla. The pattern of discontinuities, however, varies erratically with w and 
Z/a, because a very small change in the semi-angle of the characteristic cones can 
mean a very large change in the number of reflexions of the corner characteristics 
at the cylinder sides, ends and axis. It will be recalled that the characteristics 
from a corner ultimately reflect back to a corner because of the choice of rational 
values of c = Z/a(4w2- I)*. 

The nature of the discontinuity depends on k as shown in table 1. The dis- 
continuity when R = O(mod4) is finite on the characteristics at the corners. 
Reflexion at the ends and sides leaves the type of discontinuity unchanged, the 
sign of the operative part of k being such as to keep a211/8r az continuous along 
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the boundary. Reflexion at the axis, however, is not so simple. For the a + and 
a - characteristics of a reflexion pair at the axis, 

( a + ) + ( a - )  = 0,  
and we have in turn 

[ (m+)  + (m- ) + 13 sR/T = (p+ ) + (p- ), 
nh+= T-l-(m-) ,  (4.7) 

p+ = 2R-(p-), 

k+ = - i / ( k - )  for R = O(mod4). 

Consequently when R = O(mod4) a finite discontinuity reflects at the axis as 
a logarithmically infinite discontinuity and vice versa. A similar, more pro- 
tracted argument shows that in the second case R = 1 or 3(mod4) both of the 
two possibilities Re (k + ) = Re(k - ) occur at different reflexion points (if there 
are more than one) along the axis. 

R = O(mod 4) 
k = ( -  1)m$3p-l)l2 

logarithmically infinite on neighbouring 
parallel ‘corner ’ characteristics 

R = 1 or 3(mod 4) 

Rek -+ 0 
Discontinuity alternatively finite and Discontinuity logarithmically infinite on 

all ‘corner’ characteristics 

TABLE 1. 

(b )  R = 2(mod4) 

Pressure modes of O( 1/82) now recur for s -so = [T + c* where 

4c*+3 = T if T = 3(mod4) 

= 3T if T = l(mod4) 

and the pressure may now be written 

+ contributions which yield continuous velocities, (4.9) 
where 

16(w- 1) (1 + 2w) exp [tni((l or 3)aT + l)] - dF 
= n(16w-7)R ( - 1)Kl or 3) (R+T)-lI/4 da 

(4.10) 
and (1 or 3) is taken as 1 if T = 3(mOd4) and vice versa. 

Thus the velocity in the tangential direction T is now itself discontinuous. The 
strength of the discontinuity varies in an axial plane as r-4 and now varies also 
inversely as the number of reflexions R of the original corner characteristic by 
the axis. An examination of the parity of (( 1 or 3) aT + l ) / 2  reveals that the type 
of discontinuity changes between finite and logarithmically infinite on reflexion 
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at the axis. There is no change in type on reflexion at the sides or ends, because 
the normal velocities there are zero. 

The author is indebted to the Chief Scientist, Department of Supply, Australia 
for permission to publish. 
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